2004 National Collegiate Programming Contest

e Problems: There are 9 problems (14 pages in all, not count-
ing this cover page) in this packet.

e Problem Input: Input to the problems are through the input
files. Input filenames are given in the table below. Each
input file may contain one or more test cases. Test cases may
be separated by any delimiter as specified in the problem
statements.

e Problem Output: All output should be directed to standard
output (screen output).

e Time Limit: The judges will run each submitted program
with certain time limit (given in the table below).

Table 1: Problem Information Sheet

Problem Name Input File Time Limit
Problem A Baseball Team Assembly pa.in 10 secs.
Problem B Mining Strategy pb.in 10 secs.
Problem C Quadratic Curve Fit pc.in 10 secs.
Problem D Affine Decipher pd.in 10 secs.
Problem E Killing Cycles pe.n 10 secs.
Problem F Lego Decomposition pf.in 10 secs.
Problem G Printer Queue pg.in 10 secs.
Problem H Job Assignments ph.in 10 secs.
Problem I Maximize Revenue pi.in 10 secs.

Problem A
Baseball Team Assembly
Input File: pa.in

It’s time to assemble a national baseball team again. We have a list of
pitchers and a list of opponents. After years of scouting, we know the winning
probability for any pitcher to pitch against any opponent. According to the
contract, each pitcher can pitch at most one game, and the starting pitcher
will always finish the game by himself . Your job is to select a set of pitchers
so that the probability of the team beating all the opponents is maximized.

Technical Specification
1. There are n (1 < n < 300) pitchers.

2. There are m (1 < m < n) teams.

3. The value of the winning probability for a pitcher against a team is
0,52,24 orl.

5

Input File Format

The first line of the input file contains an integer indicating the number of
test cases to follow. Test cases are separated by a single blank line. For each
test case starts with a single line containing two positive integers n and m,
where n is the number of pitchers in the candidate list and m is the number
of opponents. For each of next m lines, one for each opponent, there are n
integers, pi, ..., b, wWhere, p; € {0,1,2,3,4,5}. If the i® number in the j line
is p, it means that the i pitcher against opponent j has winning probability

p/5.

Output Format

For each test case, output the maximum winning probability achievable ac-
cording to its form. Output integers a,b,c, in that order in a single line, if the

winning probability is £2'; output 0 if the winning probability is 0.

Sample Input

o1 O D N NN
N DN w =
w w
el

Output for the Sample Input

011
201

Problem B
Mining Strategy
Input File: pb.in

Consider a popular surface mining operation in which blocks of earth are
dug from the surface to extract the ore contained in them. During the mining
process, the surface of the land is excavated, forming a deeper and deeper
pit until the mining operation terminates. The final shape of this open pit is
determined before the mining operation begins. To design the optimal pit—-one
that maximizes profit-the entire mining area is divided into three-dimensional
blocks. Using geological information from drill cores, the value of the ore in
each block is estimated. Additionally, the cost of mining each particular block
is determined, thus we can assign a profit value to each block in the mine. The
optimal pit design problem is then to maximize the total profit of the mine,
while satisfying constraints on the slope of the pit walls and constraints that
allow underlying blocks to be mined only after blocks on top of them. That
is, it is impossible to excavate a block without also excavating those above it.
For convenience, we give each block an identification number. You are asked
to write a program to calculate the maximum profit that can be achieved and
list the evacuated blocks in increasing order.

Input File Format

The input file contains several lines. Each line shows the information of a
block with the format: block identification number (positive integer < 1000),
its profit value (an integer in the interval [—10000,10000]), and followed by
the identification numbers of blocks that are above it, where adjacent numbers
are separated by one or more spaces. If there is no block above it, there is
no number behind the profit value, such as block 4 in the sample input. The
input is terminated by a zero on a line by itself. Your program should be able
to handle up to 1000 blocks.

Output Format
The output contains two lines. The first line shows the maximum profit that
can be achieved and the second line contains the evacuated block identifications

in increasing order.

Sample Input

125
2-51
322
4 -2
534
0

Output for the Sample Input

Profit: 3
Evacuated blocks: 1, 4, 5

Problem C
Quadratic Curve Fit
Input File: pc.in

Given a set of N two-dimensional points S = {(z;,3:) | 1 <1 < N}, the
quadratic curve fit problem is to find a quadratic function y = f(z) = az® +
bz + ¢ such that the squared error Error = YN, (y; — f(z;))? is minimized.
This problem asks you to report three parameters a, b, c by round-off with the
precision to 4 decimals for a given data set S = {(z;, ;) | 1 <i < N}.

Input File Format

The first line of the input file always contains one integer indicating the number
of test cases to come. Test cases are always separated by a single blank line.
Each test data set consists of N + 1 lines, where the first line indicates the
number of points N (5 < N < 7) which is followed by N pairs of floating-point
numbers to 2 decimals.

Output Format
For each data case, report the estimated parameters a, b, ¢ by round-off up

to 4 decimals in a single line.

Sample Input

2

7

-3.01 5.99
-1.99 3.01
-1.01 2.01
0.01 2.99
0.99 5.99
2.01 10.99
-1.20 2.04

5
-2.00 16.00
-1.00 7.00

N O
o o o
S S
INEFTNINY
S

S
o o o
S

o

Output for the Sample Input

0.9903 1.9867 3.0089
2.0000 -3.0000 2.0000

Problem D
Affine Decipher
Input File: pd.in

Let I'={A, B, C, ---, X, Y, Z } be the set of 26 English letters, and let
the letters A, B, -+, Y, Z can be represented as numbers 0, 1, - -+, 24, 25, re-
spectively. Denote Zog = {0, 1, ---,24,25}. An integer affine transformation
(mod N) can be defined as f : Zy — Zy with f(z) = az + 8 (mod N),
where a, € Zy. The inverse integer affine transformation exists only if
ged(a, N) = 1, that is, & and N are relatively prime. This problem assumes
that N = 26.

An affine encipher takes a message, a character string consisting of En-
glish letters from I'={A, B, C, ---, X, Y, Z }, as input and outputs an
enciphered message of the same length based on an integer affine transfor-
mation, for example, '"HAPPY’ could be enciphered as "'WBUUV’ based on
f(z) =3z +1 (mod 26). An affine decipher g(y) = 9y + 17 (mod 26) is the in-
verse affine transformation of f which deciphers "'WBUUV’ as "THAPPY’. This
problem asks you to design an affine decipher based on a given affine encipher
to decipher an enciphered message.

Input File Format

The first line of the input file always contains one integer indicating the number
of test cases to come. Test cases are always separated by a single blank line.
Each test data set consists of two lines, where the first line gives three integers
@, B, v corresponding to the affine encipher f(z) = az + 8, z € Zys and the
number of characters for the enciphered message given in the next line.

Output Format
Two integers o, T corresponding to the affine decipher g(z) = oz + 7, x € Zag
is shown in the first line with the deciphered message appearing in the next

line.

Sample Input

1125
UBJXBOJTBCFBVUJGVMJTMBOEA

Output for the Sample Input

9 17

HAPPY

125
TAIWANISABEAUTIFULISLANDZ

Problem E
Killing Cycles
Input File: pe.in

Consider a graph consisting of a path together with a single node v that
is adjacent to some of the nodes on the path. Each node in the graph has a
cost. The cost of v is infinite.

The goal is to delete a subset of nodes so that no cycle remains in the
graph. (By deleting a node we mean removing the node and its incidental
edges.) For example, you could delete just the node v; the remaining graph
has no cycle. However, you want to delete a subset having minimum cost.
Since the cost of v is infinite, you definitely don’t want to delete v. For the
above graph one possibility is deleting the nodes with costs 15 and 36. The
resulting graph is as follows.

©.

O OEOR0 @D, (92)—(55)

Write a program to find a minimum-cost collection of vertices whose dele-
tion results in a graph with no cycles.

Technical Specification

There are n nodes on the path, where 1 <n < 30. Foreachi=1,2,...,n,

e let c[i] be the cost of the i-th node of the path; and

e Let a[i] be a single bit such that a[i] = 1 if and only if the i-th node on
the path is adjacent to v.

You may assume that each c[i] is a positive integer no more than 100.

Input File Format

The first line of the input file contains an integer indicating the number of test
cases to follow. Test cases are separated by a single blank line. For each test
case, the first line of input contains a single integer n. Then, n lines of input
follow: For i = 1,2,...,n, the i-th line contains c[i] and a[].

Output Format

For each test case, output the cost of a minimum cost collection of nodes whose
deletion kills all cycles.

Sample Input

o = =N
Ll N

M O
(@]

32 0
90
15 1
77 1
36 0
92 1
55 0

Output for the Sample Input

2
51

Problem F
Lego Decomposition
Input File: pf.in

The Lego Company has come up with a new Lego construction kit. The
new kit contains a set of irregular shaped Lego blocks, which are made of
connected 1 x 1 x 1 square Lego cubes. This set of Lego blocks, when put
together correctly, forms an nxm Xk rectangular cube. A block removing game
is played by removing Lego blocks one-by-one from the fully constructed n X
m X k rectangular cube. A point is scored if when a Lego block is removed from
the rectangular cube, the remaining blocks become or remain disconnected.
Two blocks are disconnected if they do not share any common face. The Lego
blocks are removed one by one until the entire rectangular cube disappeared.
Given a Lego block removing sequence, compute the total points scored. You
may assume that Lego blocks do not collaps onto each other during the block
removal process.

k-1
»

nm fk l‘jn , k

ks

niin- i{y

T

- e g

Technical Restrictions
1. 1<n,m,k <30

2. The following convention as illustrated in the figure above should be used
to reference each 1 X 1 x 1 Lego cube within the rectangular cube.

Input File Format

The first line contains an integer indicating the number of test cases to
follow. Test cases are separated by a single blank line. For each test case, the
first line contains 4 integers, n, m, k and [, where n, m, k give the dimensions
of the fully composed rectangular Lego cube (n x m X k) and [is the number
of Lego blocks that make up this rectangular cube. Each of the next [lines
takes the form p; d; dy ... dp,, where p; (< 20) is the number of connected
1 x 1 Lego cubes, namely d; dp ... dp,, in Lego block ¢. Those ! lines fully
define all the blocks and the order in which each block is removed.

Output Format

For each test case, print on one line, the number of points scored if the
given sequence of block removal is carried out.

Sample Input

1231

6012345

N w0
—

<
™
N O
M - -

2336

—
[0o}

16 17
467 12 13

6 23451011

2 14 15

Output for the Sample Input

(@]

N

Problem G

Printer Queue
Input File: pg.in

The HQ software company is designing a network printing solution for IBN
Corporation. The IBN Corporation has n network printers with ¢ computers
sharing those network printers. The n printers may print at different speed.
Once a computer sends a print job, the printer-queue controller assigns the
print job to a printer that can accomplish the print job in the least amount
of time (including waiting time) and to notify the user that the print job has
completed. Once a job is assigned to a printer, it cannot be removed from
the queue and be reassigned. You are hired by HQ to write this printer-queue
controller.

Technical Specification

1. A print job must be assigned to the printer that can finish printing at the
earlist time possible. If a job can be assigned to two or more printers that
would finish the job at the same time, then the job is always assigned to
the printer with the fastest printing speed.

2. There are n (1 < 10) network printers, all print at differnt speeds. How-
ever, those printers can start printing new job only at the beginning of
a minute. So after a print job is finished, that printer must wait till
beginning of the next minute before start printing again (if there is a job
waiting to be printed). If a job finished printing at the end of a minute,
(which is also beginning of the next minute), then the next print job
may start right away.

3. There are ¢ (1 < 20) computers that would request print jobs.
4. There are at most j (1 < 100) print jobs requested in all.

5. The printer is maintenance free. That is the printers never run out of
ink or paper.

Input File Format

The first line of the input file contains an integer indicating the number of
test cases to follow. Test cases are separated by a single blank line. For each
test case, the first line of input contains three integers, n, ¢ and j, respectively.
The second line contains n integers, indicating the speed of the n printers,
respectively. The printer speed is measured in pages per minute. On the
next j lines, each contains three integers: T;, C;, P;, meaning that at time T;,
computer C; requests a printer job to print P, pages. All the print jobs are
listed in non-decreasing order of job submit time T;.

Output Format
Write a program to simulate a printer queue controller according to the
rules specified above. After finding the optimal print job completion time for

each print job requested, output the following information. For each test case,
first output Case j, where j is the case number, on a line. On the next n lines,
output the following for each printer from printer I to printer n: N;, C;, B;, F'S;,
indicating that the last job printed on printer NN; is from computer C;, which
contains F; pages and started printing at time F'S;. If a printer did not have
any print job, then output no print job asssigned. Leave a blank line between
two consecutive cases.

Sample Input

2

313
123
01100
1190
2110
324
12656
01100
225

4 1 100
4 2 4

Output for the Sample Input

Case 1
11102
21901
31100 0

Case 2

1 no print job assigned
2245

3 1100 20

10

Problem H

Job Assignments
Input File: ph.in

Computers 1,2, ---,n (n < 100) are connected in the following manner: For
t=1,2,---,n — 1, there is a directed link between computer ¢ and computer
¢ + 1. The direction of the link is either from ¢ to ¢ + 1 or from ¢ + 1 to 4. If
there is a directed link from ¢ to 7+ 1, then computer i+ 1 can get information
from computer 7. Similarly, if there is a directed link from 7 + 1 to ¢, then
computer ¢ can get information from computer ¢ + 1. Figure 1 is an example
of such a connection.

1 2 3 4 5 6 7 8 9
e— 00— 6 9 0 —6 —0 —0

Figure 1: Directed links between computers

There is a group of m (m < 300) jobs that need to be assigned to the
computers. Some of these jobs are related. We put a directed link from job j
to job j' to mean that j and ;7' must be assigned to distinct computers, and
the computer assigned to work on job ;' needs to get information from the
computer which is assigned to work on job j. So if there is a directed link
from job j to job j/, and job j is assigned to computer 7, job j' is assigned
to computers 4, then we must have i # 7' and there is a directed link from
computer 7 to computer 7. For example, Figure 2 is a group of jobs with
directed links between them.

10 11 12 13 14 15 16 17 18

Figure 2: Directed links between jobs

We can assign the computers in Figure 1 to do the jobs in Figure 2 as in
Figure 3:

Figure 3: Assigning the jobs to the computers

Given a set of computers and the directed links between them, a set of
jobs and the directed links between them, your task is to determine if there
is a valid assignment. Le., each job i is assigned to a computer ¢(%), and if
there is a directed link from job 7 to job j, then there must be a directed link
from computer ¢(¢) to computer ¢(j). Note that it is not necessary that every

11

computer has a job, but every job must be assigned to a computer.

Input File Format
The input consists of a number of test cases.

The 1st line of a test case contains a +,— sequence of length n — 1, which
represent the connection between n computers. + means a forward link, —
means a backward link. For example + + — + + — ++ means that there are
9 computers (and hence 8 links). The directed links are as shown in Figure
l,1e,1—22,2—-53,4—+3,4—5355—6,7—>6,7— 8and 8 — 9. The
second line contains one positive integer m, which is the number of jobs. The
next m lines contain information of the relation between the m jobs. Each of
the m lines contains either a sequence of positive integers, or a single number
0. If the ¢th line contains the single number 0, then there is no directed links
from job 7 to other jobs. Otherwise, if the ¢th line contains integer j, then it
means that there is a directed link from job 7 to job j. For example, if the ¢th
lines is

248
it means that there are directed links from job 7 to jobs 2,4, 8.

The next test case starts after the last line of the previous case. A 0 signals
the end of the input.

Output File Format

The output contains one line for each test case. Each line contains a single
letter Y or N. Y means that the required assignment exists, and N means
that the required assignment does not exist. The second sample input is the
example given in Figures 1 and 2, and Figure 3 shows that the output is Y.

Sample Input

—
[y

Y
N

SO WH OO, U O WN
- [
w (]

12 3

12

15 16
9 13

10 18
16

Output for the Sample Input

=

13

Problem I
Maximize Revenue
Input File: pi.in

Alphanti drives a truck transporting goods between n (n < 100) cities. If
he drives from city 4 to city j, he earns ¢;; (—1000 < ¢;; < 1000) dollars.
Find a route that maximizes the money he can make in k¥ (k < 300) trips (he
starts from city s, and needs not be back to the city s when he finishes his kth

trip).

Input File Format

The input consists of a number of test cases.

The 1st line of a test case contains three positive integers n, s, k, separated
by single spaces, where n is the number of cities, and s is the city where
Alphanti starts, and & is the number of trips he will make. This is followed
by n lines, each line contains n integers. The jth number of the ith line is ¢;:
the number of dollars earned by one trip from city 7 to city j.

The next test case starts after the last line of the previous case. A 0 signals
the end of the input.

Output Format
The output contains one line for each test case. Each line contains an
integer, which is the maximum revenue can be gained by Alphanti in & trips.

Sample Input

3210
025
302
-120
5111

0 10 12 13 2
205312
23 21 0 3 15
-23-406
-12 14 5 -10 0
0

Output for the Sample Input

33
188

14

